Identification of a NLR disease resistance gene involved in Nicotiana hybrid lethality

Justin Ma, Wesley Hancock, Ramsey Lewis Department of Crop and Soil Science, North Carolina State University

NC STATE UNIVERSITY

Summary

- Nicotiana tabacum maternal haploids can be produced using an interspecific cross with a distant relative, N. africana
- The cross between *N. tabacum* and *N. africana* results in lethality at the cotyledonary stage ("hybrid lethality")
- A gfp reporter system was developed to help distinguish haploids and hybrids
- Transposon-tagging identified a nucleotide-binding site leucine-rich repeat (NLR) in N. tabacum as the candidate gene causing the hybrid lethality
- *NLRs* are the major class of *R* genes for disease resistance in plants
- Current work using CRISPR/Cas9 and agroinfiltration as a reverse genetics tool to confirm the role of this gene in hybrid lethality

Hybrid lethality as a biotech tool and research model

Identifying genes involved in hybrid lethality could:

- Allow the development of hybrid lethality as a phenotypic trait and marker; this could be useful in breeding applications such as doubled haploid production or in systems to restrict gene flow
- Improve the understanding of proteins involved in plant-microbe interactions, which are likely involved in hybrid lethality; this could lead to breeding and biotech applications
- Help develop methods to overcome intra- and interspecific reproductive barriers that restrict access to wider germplasm in plant breeding
- Advance understanding of mechanisms involved in reproductive isolation and speciation, which are poorly understood by evolutionary biologists

Use of gfp as a dominant seedling marker for haploid selection

Use of gfp as a dominant seedling marker

 Transformation of *N. africana* with a *gfp* construct (*35S:mgfp-ER*) allowed for discrimination of haploid (non-GFP) and hybrid plants (GFP) under a UV light (Fig 1B). The effect is particularly clear in the stem and veins (Fig 1C).

Fig 1. F₁ Progeny of N. tabacum (non-GFP, Hl_THl_T) x N. africana (GFP, Hl_AHl_A)

Corresponding phenotype-genotype association

- Most hybrids: necrosis (*Hl_THl_A*), GFP
- Haploids (maternal): viable (*Hl*_T), non-GFP
- Hybrids missing lethality factor: viable $(Hl_T \text{ or } Hl_A -)$, GFP

Identifying an NLR as a candidate gene for HI_T

Transposon-tagging

• N. tabacum transformed with an engineered Ac/Ds maize transposon was used in a system to tag Hl_T

N. tabacum x N. africana $(Ac-; Ds:Su/su; (P_AP_A, Hl_AHl_A; GFP)$ $P_TP_PHl_THl_p; \text{ non-GFP}$

Plants representing candidates are characterized by: • Hybrid state (GEP)

- Intact chromosome H (PT30342, P_TP_A)
- Ds present and tagging $Hl_T(Ds:Hl_T)$
- Ac absent (stably-tagged)

- · Several flanking sequences were obtained by hiTAIL-PCR and aligned to the N. tabacum genome
- Using a series of BLAST searches, a sequence was putatively identified as an R gene (NLR)
- · NLR proteins are key signaling components of plant hypersensitive response to pathogen infection

N. sylvestris NLR homolog	Coverage (%)	Identity (%)	Alignment of homologs to candidate Hl_T
R homolog 1	100	90	
R homolog 2	80	95	
R homolog 3	70	93	H

simplicity, the genes have been designated HI_T and HI_A representing the N. tabacum and N. africana alleles, respectively. Key steps in this goal involve:

Objectives and Key Steps

· Developing a population for transposon-tagging of the hybrid lethality gene

The overall objective is to identify the genes involved in hybrid lethality. For

- · Screening plants with the desired phenotype and genotype
- · Identifying candidate genes
- Verifying candidate genes using reverse genetics (CRISPR/Cas9 knockouts)
- In order to efficiently screen plants, preliminary objectives were also met: • Development of green fluorescent protein (*gfp*) as a dominant seedling
- marker to distinguish hybrids from haploids
- Mapping the hybrid lethality locus using SSRs; this was possible due to the observation of chromosomal breakage in hybrids, resulting in non-lethal surviving plants

Mapping of the hybrid lethality locus

Screening surviving hybrids mapped Hl to a nearby SSR (PT30342) on Chromosome H (Table 1). The candidate gene (*R* homolog) identified by transposon-tagging associated closely with PT30342 (Table 2).

Table 1. Counts of plants by genotypic class and ploidy. 96% of diploids monoallelic for either

 PT30342 allele were viable; necrotic plants showed both *N. tabacum* and *N. africana* alleles $(P_T P_A)$

PT30342 SSR	Diploid	Haploid
<i>P_T</i> —	31	10
$P_T P_A$	3	0
$-P_A$	45	0

Table 2. Counts of diploid plants by
genotypic class. The PT30342 N. tabacum
allele (P_T) segregates nearly perfectly with
the R_T candidate gene

PT30342 SSR	R _T (present)	R _T (absent)
P_T —	29	1
$P_T P_A$	1	1
$-P_A$	0	45

Fig 2. Possible arrangement of relevant markers. PT30342 is near the end of chromosome H in *N. tabacum* suggesting viable hybrids, and the loss of Hl_T or Hl_A , are a result of chromosome breakage or aneuploidy

- HI: hybrid lethality gene
- *R*: *NLR* homolog identified by transposon-tagging *P*: PT30342 SSR
- T subscript: N. tabacum allele/variant
- A subscript: N. africana allele/variant

Discussion

Hybrid lethality has been characterized by the hyperactivation of plant immunity

- In several other species, the causal proteins resulting in hybrid lethality have been cloned; in all
 cases, these involve at least one pathogen-signaling gene; most commonly, these are NLRs, the
 most common class of R genes in plants
- The exact protein interactions resulting in hybrid lethality are not understood, but similar phenotypes are observed in mutants and lesion mimics resulting in constitutive expression
- The *R* gene is a member of a gene family with dozens of homologs
- The fast evolving nature (e.g. intergenic recombination, gene conversion, duplication) of the *R* gene family may explain the evolution of hybrid lethality in *Nicotiana*

Further characterization of the *Hl* locus and its corresponding gene

- Hybrid lethality is observed in other *Nicotiana* interspecific crosses – is the same locus or gene involved in all of these crosses?
- What is the interacting homolog in *N. africana*?
- What is the molecular structure of the Hl_T allele, and how does it interact with the Hl_A variant to produce hybrid lethality?
- What evolutionary steps resulted in hybrid lethality in *Nicotiana*?

August 2016