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Overview of the Breeding Process

1. A breeder, along with others, determines the objectives.

2. The breeder assembles variation that would meet the defined objectives.

3. The breeder selects among different types of plant progeny.

4. New and improved varieties are disseminated to producers.
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Bernardo, R. (2014)

New cultivar

Selection programs are characterized by
an interplay between the amount of genetic
variation and the stringency of selection.

Selection 1s based on precision ranking
from phenotypes.

Only a small fraction of lines developed in
breeding programs are released as
varieties.

Essentials of Plant Breeding, Chp 1, Stemma Press



3. The breeder selects among different types of plant progeny

Fisher’s infinitesimal model, which forms the basis of the principles of plant
breeding, states that an infinite number of stochastic processes (referring to genes)

control the observed phenotype.

Phenotypes are what we observe that is determined by
genetics; the data collected to represent a trait.

Quantitative traits are polygenic or interact with the
environment, or both. Nongenetic effects contribute to a
blurring of the differences among phenotypic classes.

There 1s always more than one trait of interest, so selection can
take several forms:

one trait at a time | Genetic Architecture:
multiple quantitative traits P=G+E
simultaneously: index of traits -

Three metrics to select quantitative traits: Selecting on G requires
phenotypic value kinship information

from pedigrees, genome-

genetic value _
wide markers, or both.

breeding value



Most Agronomic Solutions are Determined Experimentally

The production environment is simulated and
treatment effects are isolated statistically
using generalized linear models or linear
mixed models.

Response variables generally follow normal
distributions.

Fig. 1 Probabilistic description of the distribution of yield
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Example Research Questions:

Which variety out of many is the best?
When should irrigation be applied?

These questions can only be assessed in a
field experiment, where it is essential
to control all other variables except
those that are under consideration.

FUNDAMENTAL UNIT: Field plot with variable treatments.




Genetic Yield Potential is Assessed from Replicated Trials
Vijki = U+ a;+ B + wi + &k

Yijri 1s the yield observation of plot ijk!/
1 1s the intercept

aiis the i*" effect of treatment, i = Ll, o, )
Nort

Li 1s the block effect, j = {1, ..., ﬁékota Minnesota
ok 1s the effect of the k' environment, k= {1, ..., n}

¢ 1s the residual of the observation Yijri

GENETIC YIELD POTENTIAL: the yield of optimal or ideal genotypes in a target
environment, across major growing regions and environments
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Reducing Experimental Error (Noise)
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Genetic Gain

Proportion selected

Genetic gain is the amount of increase in
performance that is achieved through genetic
improvement programs.

The breeders’ equation

R=AG=2p=1hS = 4] S

AG = 24

1

Where 1 1s the standardized selection differential
r 1s the selection accuracy

o 4 1s the square root of the additive genetic variance
T 1s the length of time to complete one breeding cycle




Tools that improve accuracy

Seed Counter GPS Data Logger Bar Coded Tools

FIELD INFORMATICS : automation of data management and quality control

GPS
RFID
GIS



Postharvest Data

NIR spectra

Reflectance image

x  Absorbance Segmentation “Chemical images”

Reflectance-based Predictions of Seed Composition



End-Use Quality

Table 28. Wire-cut cookie test (AACCI 10-53) parameters by Mondelez

Wire Cut Cookie Evaluation (10-53)*

Entry Dough Dough Cookie Cookie Cookie Weight Calculated Final
Firmness Stickiness Stack Ht Width Length Loss Moisture
(2) (2) (cm x4) (cm x4) (cm x4) % %
VAOTW-415 141 30.2 13.2 4.5
VAO9W-75 175 29.0 12.5 5.1
VAO9W-73 155 30.5 13.1 4.6
VAO9W-188WS 156 28.7 12.2 5.4
WShirdey (ek) A S 309128 A8
SY AT L ae B2 e DO M26 S
F0014 149 31.5 30.8 12.9 4.7
F0039 120 stickier 4.04 32.5 32.3 13.6 4.1
F0065 119 stickier 4.39 31.3 31.3 12.6 5.1
D8006 128 stickier 4.04 32.2 32.0 13.3 4.4
Caledonia (ck) 112 stickier 4.10 32.5 324 13.5 4.2

*Red, yellow & green highlights indicate poor, marginal and good quality parameters, respectively.

marginal quality
good quality

D8006 FO039 VAOSW-75







Imaging With UAS
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F. Moreira et al.
Soybean Progeny Row Selection Experiment
Year 3 Advanced Yield Trials
AYT early 17 AYT late 17 Rank AYT early 18 AYT late 18
Yield, Yield | ACC Yield | ACC 1 Yield, Yield |ACC
Yield, Yield |ACC Yield | ACC 2 Yield, Yield | ACC Yield | ACC
ACC, Yield ACC, Yield| ACC 3 Yield, Yield| ACC
Yield, Yield| ACC ACC 4 Yield, Yield| ACC Yield | ACC
ACC, Yield Yield | ACC 5
Yield| ACC ACC, Yield, Yield | ACC 6 ACC, Yield Yield, Yield| ACC
Yield, Yield | ACC ACC, Yield, Yield | ACC 7 ACC Yield, Yield | ACC
Yield, Yield| ACC Yield | ACC 8 Yield, Yield| ACC
ACC, Yield, Yield | ACC ACC, Yield| ACC 9 Yield, Yield| ACC Yield | ACC
Yield, Yield | ACC 10 Yield | ACC Yield| ACC
9 3 Yield 26 8 6
8 3 Yield|ACC 29 5 3
3 5 ACC 10 2 0



Mesh from Point Cloud by Delaunay triangulation

Dr. Monica Herrero-Huerta
Rainey Lab

Herrero-Huerta and Rainey (2019) High Throughput Phenotyping of
Physiological Growth Dynamics from UAS-based 3d Modeling In Soybean



3D Processing: Height Point Clouds
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Monica Herrero-Huerta, and K. M. Rainey. ‘High Throughput Phenotyping of
Physiological Growth Dynamics from UAS-Based 3D Modeling in Soybean’.(2019)
ISPRS-International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences 4213




High Density Molecular Markers
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Genomic Selection/ Genomic Prediction/
Genomewide Selection

Bernardo, R.(2019) Breeding for Quantitative Traits in Plants, Chp 11, Stemma Press

Training
population
Test population
Phenotypic data Genomewide SNP‘data
marker effects S
SNP data —> or GBLUP /\l/
Predicted
performance

'mp
Subset for

cross validation P — G + E

GENOMIC SELECTION: Use a large set of random markers directly to perform a
marker-based selection using the predicted marker effects.

GS 1s a tool for predicting breeding values for quantitative traits using dense

DNA markers throughout the genome. It improves reliability by accounting for
the inheritance of genes with small effects.



When to use GS

Bernardo, R.(2019) Breeding for Quantitative Traits in Plants, Chp 11, Stemma Press

1.  When phenotypic selection is ineffective.
To increase gain per unit time.

For traits that are difficult to measure.

A w1

For other TPES, to predict performance of lines in environments
where they have not been phenotyped (i.e. hort crops).

5. When there are too many candidates to phenotype.
(prediction of performance in a seedbank).

6. When seed amounts are insufficient (i.e. DH).

Criteria

1.  Genomewide-markers must be cheap, easy.
2. Trait inheritance quantitative and generally additive.

3. GS must be cheaper than phenotyping, which is a function of prediction
accuracy.



When to use GS

1. When phenotypic selection is ineffective

Fusarium Head Blight (FHB)

Another challenging disease in Barley

Major outbreak in Midwest U.S. in 1993
Mycotoxin deoxynivalenol (DON)
Sources of resistance are unadapted
Quantitatively inherited resistance
Many QTL with small effects

Challenging to phenotype

K. Smith et al.
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Schematic overview of the project.

Germplasm base, 962-accession HT --------
reference set, 299-accession training -- - -
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Yield potential for 663 untested accessions
grouped into eight combinations based on
Yu, X., Li, X., Guo, T. et al. Genomic predicted genotypic effects of three other
prediction contributing to a promising global  traits. Green rectangles, favourable values;
strategy to turbocharge gene banks. Nature
Plants2, 16150 (2016) blue rectangles, unfavourable values. HT, plant

doi:10.1038/nplants.2016.150 height; RL, root lodging; and SN, stalk number.



